ক ও খ যথাক্রমে ৪,০০০ টাকা ও ৬,০০০ টাকা দিয়ে একত্রে কারবার শুরু করল। ৪ মাস পরে ক তার মূলধনের ; অংশ উঠিয়ে নিয়ে গেল এবং আরাে ৫০০ টাকা বিনিয়ােগ করল। এর ২ মাস পরে গ ঐ কারবারে ১০,০০০ টাকা দিয়ে অংশীদার হল। এর ৬ মাস পরে দেখা গেল তাদের কারবারে লাভ হয়েছে ২২০০০ টাকা। লাভের অংশ কে কত পাবে?
ক ও খ যথাক্রমে ৪,০০০ টাকা ও ৬,০০০ টাকা দিয়ে একত্রে কারবার শুরু করল। ৪ মাস পরে ক তার মূলধনের ; অংশ উঠিয়ে নিয়ে গেল এবং আরাে ৫০০ টাকা বিনিয়ােগ করল। এর ২ মাস পরে গ ঐ কারবারে ১০,০০০ টাকা দিয়ে অংশীদার হল। এর ৬ মাস পরে দেখা গেল তাদের কারবারে লাভ হয়েছে ২২০০০ টাকা। লাভের অংশ কে কত পাবে?
Earn by adding a description for the above question! 🏆✨
Provide correct answer/description to Question, help learners, and get rewarded for your contributions! 💡💰'
নৌকা যেতে পারে ৮ কিমি অনুকূলে এবং ৫ কিমি প্রতিকূলে, তাহলে নৌকার বেগ অনুকূলে (Vr) এবং প্রতিকূলে (Vc) প্রতিটি স্রোতের বেগের সাথে যোগ হতে হবে।
স্রোতের বেগ হলো (Vs)। প্রথমে নৌকার অনুকূলে বেগ বের করা যাক:
Vr = Vs + 1 (সংখ্যা 1 নৌকার বেগ এবং স্রোতের অনুকূল বেগের মধ্যে পার্থক্য)
প্রতিকূলে নৌকার বেগ বের করা যাক:
Vc = Vs - 1 (সংখ্যা 1 নৌকার বেগ এবং স্রোতের প্রতিকূল বেগের মধ্যে পার্থক্য)
আমরা জানি যে যদি স্রোতের বেগ প্রতি ঘণ্টায় ১ কিমি অধিক হয় তবে নৌকা প্রতিকূলে দ্বিগুণ বেগে যেতে পারে, তাহলে আমরা নিম্নলিখিত সমীকরণ ব্যবহার করে এই সমস্যাটি সমাধান করতে পারি:
Vc = 2 * Vr
Vs - 1 = 2 * (Vs + 1)
Vs - 1 = 2Vs + 2
Vs - 2Vs = 2 + 1
-Vs = 3
Vs = -3
আমরা স্রোতের বেগ হলো -3 কিমি/ঘণ্টা (প্রতিকূল দিকে যাওয়ার কারণে সর্বনিম্ন মান নেগেটিভ)।
আমরা নৌকার অনুকূলে বেগ (Vr) বের করতে পারি:
Vr = Vs + 1 Vr = (-3) + 1 Vr = -2 কিমি/ঘণ্টা
তাহলে, নৌকা সম্পূর্ণ ৮ কিমি অনুকূলে যেতে পারে এবং স্রোতের বেগ হলো -3 কিমি/ঘণ্টা এবং নৌকার অনুকূলে বেগ হলো -2 কিমি/ঘণ্টা